Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Med (Lausanne) ; 9: 882477, 2022.
Article in English | MEDLINE | ID: covidwho-1979044

ABSTRACT

The implication of the ABO blood group in COVID-19 disease was formulated early, at the beginning of the COVID-19 pandemic more than 2 years ago. It has now been established that the A blood group is associated with more susceptibility and severe symptoms of COVID-19, while the O blood group shows protection against viral infection. In this review, we summarize the underlying pathophysiology of ABO blood groups and COVID-19 to explain the molecular aspects behind the protective mechanism in the O blood group. A or B antigens are not associated with a different risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection than that of other antigens. In this case, the cornerstone is natural anti-A and anti-B antibodies from the ABO system. They are capable of interfering with the S protein (SARS-CoV-2) and angiotensin-converting enzyme 2 (ACE2; host cell receptor), thereby conferring protection to patients with sufficient antibodies (O blood group). Indeed, the titers of natural antibodies and the IgG isotype (specific to the O blood group) may be determinants of susceptibility and severity. Moreover, older adults are associated with a higher risk of bad outcomes due to the lack of antibodies and the upregulation of ACE2 expression during senescence. A better understanding of the role of the molecular mechanism of ABO blood groups in COVID-19 facilitates better prognostic stratification of the disease. Furthermore, it could represent an opportunity for new therapeutic strategies.

2.
J Cardiovasc Dev Dis ; 8(12)2021 Nov 29.
Article in English | MEDLINE | ID: covidwho-1542593

ABSTRACT

A high percentage of patients with COVID-19 (coronavirus disease 2019) have previous cardiovascular disease (CVD). The findings presented here came from an epidemiological population-based registry study (real-world data) that enrolled all in-hospital COVID-19 patients with previous CVD from 1 March to 31 May 2020. Death, other comorbidities, hospital stay variables, ventilation type, and main clinical outcomes were evaluated. In Castile and Leon, 35.83% of the 7307 in-hospital COVID-19 patients who participated in this study had previous CVD, particularly arrhythmias (48.97%), cerebrovascular disease (25.02%), ischemic heart disease (22.8%), and chronic heart failure (20.82%). Of the patients, 21.36% were men and more than 90% were over 65 years of age, and the mortality rate achieved 32.93%. The most used medicines were antibiotics (91.41%), antimalarials (73.3%), steroids (46.64%), and antivirals (43.16%). The main predictors of death were age over 65 years (OR: 5), ventilation needs (OR: 2.81), treatment with anti-SIRS (systemic inflammatory response syndrome) medicines (OR: 1.97), antivirals (OR: 1.74) or steroids (OR: 1.68), SIRS (OR: 5.75), SARS (severe acute respiratory syndrome) (OR: 2.44), or AKI (acute kidney injury) (OR: 1.63) occurrence. Chronic heart failure and cerebrovascular disease were associated with a worse clinical course of COVID-19, especially in men older than 65 years with diabetes who developed SIRS, SARS, or AKI.

3.
J Clin Med ; 10(22)2021 Nov 20.
Article in English | MEDLINE | ID: covidwho-1524048

ABSTRACT

Pneumonia is the main cause of hospital admission in COVID-19 patients. We aimed to perform an extensive characterization of clinical, laboratory, and cytokine profiles in order to identify poor outcomes in COVID-19 patients. METHODS: A prospective and consecutive study involving 108 COVID-19 patients was conducted between March and April 2020 at Hospital Clínico Universitario de Valladolid (Spain). Plasma samples from each patient were collected after emergency room admission. Forty-five serum cytokines were measured in duplicate, and clinical data were analyzed using SPPS version 25.0. RESULTS: A multivariate predictive model showed high hepatocyte growth factor (HGF) plasma levels as the only cytokine related to intubation or death risk at hospital admission (OR = 7.38, 95%CI-(1.28-42.4), p = 0.025). There were no comorbidities included in the model except for the ABO blood group, in which the O blood group was associated with a 14-fold lower risk of a poor outcome. Other clinical variables were also included in the predictive model. The predictive model was internally validated by the receiver operating characteristic (ROC) curve with an area under the curve (AUC) of 0.94, a sensitivity of 91.7% and a specificity of 95%. The use of a bootstrapping method confirmed these results. CONCLUSIONS: A simple, robust, and quick predictive model, based on the ABO blood group, four common laboratory values, and one specific cytokine (HGF), could be used in order to predict poor outcomes in COVID-19 patients.

4.
Front Immunol ; 12: 726283, 2021.
Article in English | MEDLINE | ID: covidwho-1497074

ABSTRACT

Severe status of coronavirus disease 2019 (COVID-19) is extremely associated to cytokine release. Moreover, it has been suggested that blood group is also associated with the prevalence and severity of this disease. However, the relationship between the cytokine profile and blood group remains unclear in COVID-19 patients. In this sense, we prospectively recruited 108 COVID-19 patients between March and April 2020 and divided according to ABO blood group. For the analysis of 45 cytokines, plasma samples were collected in the time of admission to hospital ward or intensive care unit and at the sixth day after hospital admission. The results show that there was a risk of more than two times lower of mechanical ventilation or death in patients with blood group O (log rank: p = 0.042). At first time, all statistically significant cytokine levels, except from hepatocyte growth factor, were higher in O blood group patients meanwhile the second time showed a significant drop, between 20% and 40%. In contrast, A/B/AB group presented a maintenance of cytokine levels during time. Hepatocyte growth factor showed a significant association with intubation or mortality risk in non-O blood group patients (OR: 4.229, 95% CI (2.064-8.665), p < 0.001) and also was the only one bad prognosis biomarker in O blood group patients (OR: 8.852, 95% CI (1.540-50.878), p = 0.015). Therefore, higher cytokine levels in O blood group are associated with a better outcome than A/B/AB group in COVID-19 patients.


Subject(s)
COVID-19/immunology , Cytokines/blood , SARS-CoV-2/physiology , ABO Blood-Group System , Aged , Biomarkers , COVID-19/diagnosis , COVID-19/mortality , Disease Progression , Female , Hepatocyte Growth Factor/blood , Hospitalization , Humans , Male , Middle Aged , Prognosis , Prospective Studies , Respiration, Artificial , Severity of Illness Index , Survival Analysis
5.
J Pers Med ; 11(7)2021 Jul 20.
Article in English | MEDLINE | ID: covidwho-1323278

ABSTRACT

Antigen tests or polymerase chain reaction (PCR) amplification are currently COVID-19 diagnostic tools. However, developing complementary diagnosis tools is mandatory. Thus, we performed a plasma cytokine array in COVID-19 patients to identify novel diagnostic biomarkers. A discovery-validation study in two independent prospective cohorts was performed. The discovery cohort included 136 COVID-19 and non-COVID-19 patients recruited consecutively from 24 March to 11 April 2020. Forty-five cytokines' quantification by the MAGPIX system (Luminex Corp., Austin, TX, USA) was performed in plasma samples. The validation cohort included 117 patients recruited consecutively from 15 to 25 April 2020 for validating results by ELISA. COVID-19 patients showed different levels of multiple cytokines compared to non-COVID-19 patients. A single chemokine, IP-10, accurately identified COVID-19 patients who required hospital admission (AUC: 0.962; 95%CI (0.933-0.992); p < 0.001)). The results were validated in an independent cohort by multivariable analysis (OR: 25.573; 95%CI (8.127-80.469); p < 0.001) and AUROC (AUC: 0.900; 95%CI (0.846-0.954); p < 0.001). Moreover, showing IP-10 plasma levels over 173.35 pg/mL identified COVID-19 with higher sensitivity (86.20%) than the first SARS-CoV-2 PCR. Our discover-validation study identified IP-10 as a robust biomarker in clinical practice for COVID-19 diagnosis at hospital. Therefore, IP-10 could be used as a complementary tool in clinical practice, especially in emergency departments.

6.
J Clin Med ; 10(9)2021 May 08.
Article in English | MEDLINE | ID: covidwho-1224044

ABSTRACT

Pneumonia is the leading cause of hospital admission and mortality in coronavirus disease 2019 (COVID-19). We aimed to identify the cytokines responsible for lung damage and mortality. We prospectively recruited 108 COVID-19 patients between March and April 2020 and divided them into four groups according to the severity of respiratory symptoms. Twenty-eight healthy volunteers were used for normalization of the results. Multiple cytokines showed statistically significant differences between mild and critical patients. High HGF levels were associated with the critical group (OR = 3.51; p < 0.001; 95%CI = 1.95-6.33). Moreover, high IL-1α (OR = 1.36; p = 0.01; 95%CI = 1.07-1.73) and low IL-27 (OR = 0.58; p < 0.005; 95%CI = 0.39-0.85) greatly increased the risk of ending up in the severe group. This model was especially sensitive in order to predict critical status (AUC = 0.794; specificity = 69.74%; sensitivity = 81.25%). Furthermore, high levels of HGF and IL-1α showed significant results in the survival analysis (p = 0.033 and p = 0.011, respectively). HGF, IL-1α, and IL 27 at hospital admission were strongly associated with severe/critical COVID-19 patients and therefore are excellent predictors of bad prognosis. HGF and IL-1α were also mortality biomarkers.

SELECTION OF CITATIONS
SEARCH DETAIL